Law of Cosines

Given that we know the sides a, b and c , how can we find the angles?

Similarly, what if we know side's b and c and angle A?

Show DVD Law O fConsines

Deriving the law of sines:
Drop an altitude length h , dividing c into x and (c-x)

Note the following trigonometric relationship:
$\cos (a)=\frac{x}{B}$
Multiplying by B we get
$B \cos (a)=x \quad$ We will use this later
Now use the Pythagorean theorem on the two right triangles getting
$B^{2}=h^{2}+x^{2}$
and
$A^{2}=h^{2}+(C-x)^{2}$
solve both equations for h^{2}
$h^{2}=B^{2}-x^{2}$ and $h^{2}=A^{2}-(C-x)^{2}$
by transitivity
$B^{2}-x^{2}=A^{2}-(C-x)^{2}$
Multiply $(C-x)^{2}$ and simplify
$B^{2}-x^{2}=A^{2}-\left(C^{2}-2 C x+x^{2}\right)$
$B^{2}-x^{2}=A^{2}-C^{2}+2 C x-x^{2}$
$B^{2}=A^{2}-C^{2}+2 C x$
And now Solve for A^{2}
$A^{2}=B^{2}+C^{2}-2 C x$
Now we substitute in x from above and get

$$
A^{2}=B^{2}+C^{2}-2 B C \cos (a)
$$

Note that we could do this derivation using any permutation of the sides so we also have

$$
B^{2}=A^{2}+C^{2}-2 A C \cos (b)
$$

and

$$
C^{2}=A^{2}+B^{2}-2 A B \cos (c)
$$

This is the LAW OF COSINES!

$$
C^{2}=A^{2}+B^{2}-2 A B \cos (c)
$$

Note the choice of A, B and C is arbitrary.
How can we use these? Let's go back to the previous two unsolved problems
For this problem SSS we use the Law of Cosines

$A=$

To find the angle across from the 7 side we note that:

$$
7^{2}=5^{2}+6^{2}-2 \cdot 5 \cdot 6 \cos (x)
$$

Solving for x we get
$x=\cos ^{-1}\left(\frac{7^{2}-6^{2}-5^{2}}{-(2 \cdot 5 \cdot 6)}\right)=78.46^{\circ}=$
In the same way we can find the other two angles

For SAS we have the following situation:

Here we use the Law of Cosines to find side a

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos (A) \\
& a=\sqrt{6^{2}+10^{2}-120 \cos \left(38^{\circ}\right)} \approx \sqrt{135.2}=11.63
\end{aligned}
$$

Knowing side a we can find the missing sides using the law of sines.

HW: 6.6: 3, 4, 5, 11, 13, 14, 1525

