Trigonometry 11 Mathematics 108

Identities

What is an identity?
An identity is an equation showing an equivalence between two expressions for all values of a variable.

Example:
$\mathrm{x}+\mathrm{x}-6=(4 \mathrm{x}-12) / 2$
To show the first two are equivalent we state a theorem:
$A=2(x-3)$ if and only if $A=x+x-6$
We start with 2(x-3) and manipulate it until we end up with $\mathrm{x}+\mathrm{x}-6$ as follows: $2(x-3)=2 x-2(3)=x+x-6$, To prove the only if part we would have to start with $x+x-6$ and show 2(x-3) but in this example, we can just state that the steps are reversible.

Let's review some basic trigonometric equivalences.
$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$
$\csc x=\frac{1}{\sin x} \quad \sec x=\frac{1}{\cos x}$

A simple Identity Proof

Using these, let's try a simple proof of an identity:
$\tan x=\frac{1}{\cot x}$
The steps would look like this:
$\tan x=\frac{\sin x}{\cos x}$ (definition
$\frac{\sin x}{\cos x}=\frac{\sin x}{\cos x} \times \frac{1 / \sin x}{1 / \sin x}$ (multiplication by 1
$\frac{\sin x}{\cos x} \times \frac{1 / \sin x}{1 / \sin x}=\frac{1}{\cos x / \sin x}$ (rules for fractions
$\frac{1}{\cos x / \sin x}=\frac{1}{\cot x}$ (definition
This shows $\tan x=\frac{1}{\cot x}$

To show $\frac{1}{\cot x}=\tan x$ we can reverse the steps.

Or similarly we can just state that "The steps are reversible".

Pythagorean Identities

Previously we demonstrated the Pythagorean identity
$\sin ^{2} x+\cos ^{2} x=1$
This identity leads to two more identities
$\sin ^{2} x+\cos ^{2} x=1$
$\left(\sin ^{2} x+\cos ^{2} x\right) \frac{1}{\cos ^{2} x}=1 \cdot \frac{1}{\cos ^{2} x}$
$\frac{\sin ^{2} x}{\cos ^{2} x}+\frac{\cos ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}$
$\tan ^{2} x+1=\sec ^{2} x$
$\sin ^{2} x+\cos ^{2} x=1$
$\left(\sin ^{2} x+\cos ^{2} x\right) \frac{1}{\sin ^{2} x}=1 \cdot \frac{1}{\sin ^{2} x}$
$\frac{\sin ^{2} x}{\sin ^{2} x}+\frac{\cos ^{2} x}{\sin ^{2} x}=\frac{1}{\sin ^{2} x}$
$1+\cot ^{2} x=\csc ^{2} x$
These three identities are all referred to as Pythagorean identities.

Even-Odd Identities

We've previously see that
$\sin (-x)=-\sin (x)$ showing sine to be an odd function and
$\cos (-x)=\cos (x)$
Showing cosine to be an even function.
Let's check the other 4 trigonometric functions
$\tan (-x)=\frac{\sin (-x)}{\cos (-x)}=\frac{-\sin (x)}{\cos (x)}=-\tan (x)$ so tangent is an odd function

The same steps show co-tangent is also odd
$\sec (-x)=\frac{1}{\cos (-x)}=\frac{1}{\cos (x)}=\sec (x)$ so secant is an even function
$\csc (-x)=\frac{1}{\sin (-x)}=\frac{1}{-\sin (x)}=-\csc (x)$ so co-secant is an odd function

Cofunction Identities

a
This diagram indicates that since
$\sin \theta=\frac{o}{h}$
$\cos \left(90^{\circ}-\theta\right)=\frac{o}{h}$
that
$\sin \theta=\cos \left(90^{\circ}-\theta\right)$
and similarly
$\cos \theta=\sin \left(90^{\circ}-\theta\right)$
Using these we can find
$\tan \left(90^{\circ}-\theta\right)=\frac{\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=\frac{\cos \theta}{\sin \theta}=\cot \theta$
similarly
$\cot \left(90^{\circ}-\theta\right)=\tan \theta$
and
$\sec \left(90^{\circ}-\theta\right)=\csc \theta$
$\csc \left(90^{\circ}-\theta\right)=\sec \theta$

Simplifying Trigonometric Expressions.

When faced with a trigonometric expression, one useful strategy is to rewrite the expression in terms of sines and cosines and then simplify.
$\cot x+\tan x \sin x=\cos x+\frac{\sin x}{\cos x} \sin x=$
$\frac{\cos ^{2} x+\sin ^{2} x}{\cos x}=\frac{1}{\cos x}=\sec x$

Another strategy is combine fractions.

$$
\begin{aligned}
& \frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=\frac{\sin x(1+\sin x)+\cos ^{2} x}{\cos x(1+\sin x)}= \\
& \frac{\sin x+\sin ^{2} x+\cos ^{2} x}{\cos x(1+\sin x)}=\frac{\sin x+1}{\cos x(1+\sin x)}=\frac{1}{\cos x}=\sec x
\end{aligned}
$$

A note on disproving identities
While proving an expression is an identity requires a proof, disproving an identity merely requires a single case.

You might suspect that $\sin x+\cos x=1$ is an identity since it is true for 0° and 90°

But for 180° we get $\sin 180^{\circ}+\cos 180^{\circ}=0+{ }^{-} 1={ }^{-} 1 \neq 1$

When proving an identity, performing the same operation on each side is not valid unless both operations are reversible.

So for example
$\sin (-x)=\sin (x)$
$-\sin (x)=\sin (x)$
$(-\sin x)^{2}=(\sin x)^{2}$
$-1^{2} \sin ^{2} x=\sin ^{2} x$
$\sin ^{2} x=\sin ^{2} x$
is not a valid proof, and the original expression is not an identity.

Example

$$
\begin{aligned}
& \cos \theta(\sec \theta-\cos \theta)=\sin ^{2} \theta \\
& \cos \theta\left(\frac{1}{\cos \theta}-\cos \theta\right)=1-\cos ^{2} \theta= \\
& \sin ^{2} \theta+\cos ^{2} \theta-\cos ^{2} \theta=\sin ^{2} \theta
\end{aligned}
$$

Example

$2 \tan x \sec x=\frac{1}{1-\sin x}-\frac{1}{1+\sin x}$
$\frac{1}{1-\sin x}-\frac{1}{1+\sin x}=\frac{1+\sin x-(1-\sin x)}{(1-\sin x)(1+\sin x)}=$
$\frac{2 \sin x}{1-\sin ^{2} x}=\frac{2 \sin x}{\sin ^{2} x+\cos ^{2} x-\sin ^{2} x}=$
$\frac{2 \sin x}{\cos ^{2} x}=2 \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x}=2 \tan x \sec x$

Example

$$
\begin{aligned}
& \frac{\cos x}{1-\sin x}=\sec x+\tan x \\
& \frac{\cos x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}=\frac{\cos x+\cos x \sin x}{1-\sin ^{2} x}= \\
& \frac{\cos x+\cos x \sin x}{\cos ^{2} x}=\frac{1}{\cos x}+\frac{\sin x}{\cos x}=\sec x+\tan x
\end{aligned}
$$

You can however work both sides of the identity.
Once you find the two sides equal, you can use the fact that your steps are reversible to finish the proof.

$$
\begin{aligned}
& \frac{1+\cos x}{\cos x}=\frac{\tan ^{2} x}{\sec x-1} \\
& \frac{1}{\cos x}+1=\frac{\sec ^{2} x-1}{\sec x-1} \\
& \sec x+1=\frac{(\sec x-1)(\sec x+1)}{\sec x-1} \\
& \sec x+1=\sec x+1
\end{aligned}
$$

Note that since these steps are reversible, the proof is valid
7.1 13-18, 37, 39, 42, 50, 64

