Trigonometry 14 Mathematics 108
Mention Study Guide, Cheat Sheet and Practice Exam on the web

Solving Equations with Trigonometric Functions

When solving equations with trig functions, there are a few techniques.
Keep in mind that because trig functions are periodic, there might be periodic solutions. These solutions may have a different period from the standard trig functions.

A simple example

$\sin \theta=\frac{1}{2} \rightarrow \theta=\sin ^{-1} \frac{1}{2}$
Note this is the same strategy we always use, to get the unknown variable alone.
In the first period of the sine function we know this value occurs twice.

$$
\theta=\frac{\pi}{6} \text { and } \theta=\frac{5 \pi}{6}
$$

But since sine is 2π periodic, the full solution is
$\theta=\frac{\pi}{6}+2 \pi n$ and $\theta=\frac{\pi}{6}+2 \pi n$

A calculator example

$$
\cos \theta=.65 \rightarrow \theta=\cos ^{-1} .65
$$

We solve this with a calculator getting $\theta=.863$
But there will be a second solution in the first 2π
-.863 or $2 \pi-.863=5.42$
So the solution is
$\theta=.863+2 \pi n$ and $\theta=5.42+2 \pi n$

Factoring

If you can factor the equation so that two or more factors equal zero, you can set each of them equal to zero.

Example
$5 \sin \theta \cos \theta+4 \cos \theta=0$
$\cos \theta(5 \sin \theta-4)=0$
$\cos \theta=0$ or $\sin \theta=\frac{4}{5}$
$\theta=\cos ^{-1} 0$ or $\theta=\sin ^{-1} \frac{4}{5} \approx .927$
The first gives solutions
$\theta=\pi n$
The second gives solutions
$\theta=.927$ and $\theta=\pi-.927 \approx 2.21$
So finally we get
$\theta=\pi n$ or $\theta=.927+2 \pi n$ or $\theta=2.21+2 \pi n$
Note that we could keep this exact by leaving $\sin ^{-1}$ unresolved
$\theta=\pi n$ or $\theta=\sin ^{-1} \frac{4}{5}+2 \pi n$ or $\theta=\left(\pi-\sin ^{-1} \frac{4}{5}\right)+2 \pi n$

Factoring a Quadratic

$2 \cos ^{2} \theta-7 \cos \theta+3=0$

In this example, treat cos as a separate variable. You can factor or use the quadratic equation:
$2 x^{2}-7 x+3=0$
$(2 x-1)(x-3)=0$
$x=\frac{1}{2}, 3$
This becomes
$\theta=\cos ^{-1} \frac{1}{2}$ or $\theta=\cos ^{-1} 3$

The latter is undefined because 3 is not in the domain of $\cos ^{-1}$ so we end up with solutions
$\theta=\frac{\pi}{3}+2 \pi n$ and $\theta=\frac{2 \pi}{3}+2 \pi n$

This same strategy will work even if you need to use the quadratic equation
$9 \cos ^{2} \theta-6 \cos \theta-1=0$
$\cos \theta=\frac{6 \pm \sqrt{36+36}}{18}=\frac{1 \pm \sqrt{2}}{3}$
This will produce 4θ values in the first 2π

An example where squaring is necessary

$\cos \theta+1=\sin \theta$
Here we have two different trig functions, but we need to convert one using the Pythagorean identity $\sin \theta=\sqrt{1-\cos ^{2} \theta}$
$\cos \theta+1=\sqrt{1-\cos ^{2} \theta}$
But now we will have to square both sides

$$
\begin{aligned}
& \cos ^{2} \theta+2 \cos \theta+1=1-\cos ^{2} \theta \\
& 2 \cos ^{2} \theta+2 \cos \theta=0 \\
& \cos \theta(\cos \theta+1)=0 \\
& \cos \theta=0,-1
\end{aligned}
$$

This gives $\theta=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$
With periodicity
$\theta=\frac{\pi}{2}+\pi n$ and $\theta=\pi+2 \pi \mathrm{n}$

An example where the period is not as obvious

$2 \sin 3 \theta-1=0$

In this example we solve for $\sin 3 \theta=\frac{1}{2}$

Applying the inverse sine function we know that
$3 \theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
It is tempting to divide by 3 at this point to get solutions
$\theta=\frac{\pi}{18}, \frac{5 \pi}{18}$
But it is better to first account for periodicity
$3 \theta=\frac{\pi}{6}+2 \pi n$ and $3 \theta=\frac{5 \pi}{6}+2 \pi n$
and then divide giving
$\theta=\frac{\pi}{18}+\frac{2 \pi n}{3}$ and $3 \theta=\frac{5 \pi}{18}+\frac{2 \pi n}{3}$
The alternative is take $\theta=\frac{\pi}{18}, \frac{5 \pi}{18}$ but realize the period of $\sin 3 \theta$ is $\frac{2 \pi}{3}$

HW 7.4: 17, 18, 21, 22, 25, 33, 41, 42
7.5: 4, 10, 17, 18

