Trigonometry 16 Mathematics 108

Euler's Equation

What we've learned about complex numbers so far suggests a question,
what is A^{z} where A is a real number and z is complex?
It's not even clear yet, what it means.
Assuming the laws of exponents must work with this we have
$A^{a+i b}=A^{a} A^{i b}$
Since a and b are real numbers we know that A^{a} is a real number, so we only need to know what $A^{i b}$ is.

Let's start with the function
$f(\theta)=\cos \theta+i \sin \theta$
Note that
$f\left(\theta_{1}\right) f\left(\theta_{2}\right)=\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right)=$ $\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)=f\left(\theta_{1}+\theta_{2}\right)$
so
$f\left(\theta_{1}\right) f\left(\theta_{2}\right)=f\left(\theta_{1}+\theta_{2}\right)$
This suggests that if we assume that $A^{i \theta}=f(\theta)$ it will follow the law of exponents that $A^{i \theta_{1}} A^{i \theta_{2}}=A^{i \theta_{1}+i \theta_{2}}$

What's left is figure out what our A is.

The discovery is attributed to Leonard Euler, whom the constant e is named after.
The surprising answer is that
$e^{i \theta}=\cos \theta+i \sin \theta$
This is known as Euler's formula.
There are a few different ways to confirm this number, however they all rely on calculus.
By substituting $\theta=\pi$ you get
$e^{i \pi}=\cos \pi+i \sin \pi=-1$
$e^{i \pi}=-1$ is known as Euler's identity and is considered one of the most famous equations in mathematics.

