Triangle Trigonometry
View of the trigonometry functions from the point of view of a Right Triangle

h-hypotenuse

 o-opposite0 a-adjacent

a

$\sin (\theta)=\frac{o}{h}$
$\cos (\theta)=\frac{a}{h}$
$\tan (\theta)=\frac{o}{a}$
Memory Device: SOH-CAH-TOA (Sounds Indian)
SOH ($\mathrm{Sin}=\mathrm{O} / \mathrm{H}$)
Sine $=$ Opposite/Hypoteneuse
CAH (Cos=A/H)
Cosine $=$ Adjacent $/$ Hypoteneuse
TOA (Tan=O/A)
Tangent $=$ Opposite/Adjacent
This is only useful when you have a right triangle. Note that $0<\theta<90^{\circ}$.

Review of Sines and Cosines

http://schoenbrun.com/foothill/math48c-2/mpeg/Ratios.mp4

What kind of problems can we solve with this?

Given any two of θ, h , a or o , we can find all missing angles and sides of the triangle.

Example: Given a right triangle with hypotenuse length 10 and missing sides
and $\theta=60^{\circ}$ what are the missing angles and sides?
Note: This is a $30 / 60 / 90$ triangle whose side ratio's you should know.
(Show How)

$$
\begin{aligned}
& \sin \left(60^{\circ}\right)=\sqrt{3} / 2 \\
& \cos \left(60^{\circ}\right)=1 / 2
\end{aligned}
$$

Also, there are buttons on your calculator for these functions and their inverses.

Digression - Important Triangles Special Angles with Exact Values

Using our knowledge of special triangles from geometry: 30/60/90 triangles:

Take an equilateral triangle with sides 1 whose angles must all be 60°.
Drop a perpendicular from it's highest point to the base.
This divides the triangle into two congruent triangles.
By symmetry the angles of each of these triangles must be 30/60/90 degrees.
The base is $1 / 2$ and the hypotenuse is 1 so by the Pythagorean theorem we get the second leg to be $\frac{\sqrt{3}}{2}$

This tells us that

$$
\begin{aligned}
& \sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} \\
& \cos \left(60^{\circ}\right)=\frac{1}{2}
\end{aligned}
$$

Isosceles right triangles:
Given a right isosceles triangle with hypotenuse 1 we know immediately that the smaller angles are 45° and by the Pythagorean theorem, the legs are $\frac{1}{\sqrt{2}}$

This tells us that

$$
\begin{aligned}
& \sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}} \\
& \cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Using a Calculator to find Sines and Cosines
ALWAYS CHECK THE MODE FIRST!!!!!!!
For Now use Degree Mode!

Example:

Given a right triangle with hypotenuse length 10 and leg 4, what are the missing angles and sides?

Since we know
$\cos (\theta)=\frac{4}{10}=.4$
Using a scientific calculator we find
$\theta \approx 66.42182^{\circ}$ using the $\cos ^{-1}$ function key
The table below shows that the cosine of .4 is
$66^{\circ} 25<\theta<66^{\circ} 26$
Converting from degrees + minutes to degrees
$66^{\circ} 25=66+\frac{25}{60}=66.417$
$66^{\circ} 26=66+\frac{26}{60}=66.433$

Some ancient history

How we used to get the values of arbitrary trig functions from a table.

NATURAL TRIGONOMETRIC FUNCTIONS
TO FIVE PLACES

$23^{\circ}(2$	3°)					(336) 156°	
,	Sin	Tan	Cot	Cos	Sec	Cse	,
0	. 39073	. 42447	2.3559	. 92050	1.0864	2.5593	60
1	. 39100	. 42482	2.3539	. 92039	1.0865	2.5576	59
2	. 39127	. 42516	2.3520	. 92028	1.0866	2.5558	58
3	. 39153	. 42551	2.3501	. 92016	1.0868	2.5541	57
4	. 39180	. 42585	23483	92005	1.0869	2.5523	56
5	. 39207	. 42019	2.3464	. 91994	1.0870	2.5506	55
6	. 30234	. 42654	2.3445	. 91982	1.0872	2.5488	54
7	. 39260	. 42688	2.3426	. 91971	1.0873	2.5471	53
8	. 39287	. 42722	2.3407	. 91959	1.0874	2.5454	52
9	. 39314	. 42757	2.3388	. 91948	1.0876	2.5436	51
10	. 39341	. 42791	2.3369	. 91936	1.0877	2.5419	50
11	. 39367	. 42826	2.3351	. 91925	1.0878	2.5402	49
12	. 39384	. 42860	2.3332	. 91914	1.0880	2.5384	48
13	. 39421	. 42894	2.3313	. 91902	1.0881	2.5367	47
14	. 39448	. 42929	2.3294	. 91891	1.0883	2.5350	46
15	. 39474	. 42963	2.3276	. 91879	1.0884	2.5333	45
10	. 30501	. 42998	2.3257	. 91808	1.0885	2.5316	44
17	. 30528	. 43032	2.3238	. 91856	1.0887	2.5298	43
18	. 39555	. 43067	2.3220	. 01845	1.0888	2.5282	42
19	. 39581	. 43101	2.3201	. 91833	1.0888	2.5264	41
20	. 39608	. 43136	2.3183	. 91822	1.0891	2.5247	40
21	. 39035	. 43170	2.3164	. 91810	1.0892	2.5230	39
22	. 39661	. 43205	2.3146	. 91798	1.0893	2.5213	38
23	. 39688	.43239	2.3127	. 01787	1.0845	2.5196	37
24	. 39715	. 43274	2.3109	. 91775	1.0896	2.5180	36
25	. 38741	. 43308	2.3090	. 91764	1.0898	2.5163	35
28	. 39708	. 43343	2.3072	. 91752	1.0898	2.5146	34
27	. 39795	. 43378	2.3053	. 91741	1.0900	2.5129	33
28	. 39822	. 43412	2.3035	. 91729	1.0902	2.5112	32
29	. 39848	. 43447	2.3017	. 91718	1.0903	2.5095	31
30	. 39875	. 43481	2.2098	. 91706	1.0904	2.5078	30
31	. 39902	. 43516	2.2980	. 91694	1.0906	2.5062	29
32	. 39928	. 43550	2.2962	. 91683	1.0907	2.5045	28
33		. 43585	2.2944	. 91671	1.0909	2.5028	27
34	. 30982	. 43620	2.2925	. 01060	1.0910	2.5012	26
35	. 40008	. 436.54	2.2907	. 91648	1.0911	2.4995	25
36	740085	. 43689	2.2889	. 91636	1.0913	2.4978	24
37	. 40062	. 43724	2.2871	. 91625	1.0914	2.4962	23
38	. 40088	. 43758	2.2853	.91613	1.0915	2.4945	22
39	. 40115	. 43793	2.2835	.91601	1.0917	2.4928	21
40	. 40141	. 43828	2.2817	. 91590	1.0918	2.4912	20
41	. 40168	. 43862	2.2799	. 91578	1.0820	2.4895	19
42	. 40195	. 43897	2.2781	. 91566	1.0921	2.4879	18
43	. 40221	. 43932	2.2763	. 91555	1.0922	2.4882	17
44	. 40248	. 43966	2.2745	. 91543	1.0924	2.4846	16
45	. 40275	. 44001	2.2727	. 91531	1.0925	2.4830	15
46	. 40301	. 44036	2.2709	. 91519	1.0927	2.4813	14
47	. 40328	. 44071	2.2691	. 91508	1.0928	2.4797	13
48	. 40355	. 44105	2.2673	. 91496	1.0929	2.4780	12
49	. 40381	. 44140	2.2655	. 91484	1.0931	2.4764	11
50	. 40408	. 44175	2.2637	. 91472	1.0932	2.4748	10
51	. 40434	. 44210	2.2620	. 91461	1.0934	2.4731	9
52	. 40461	44244	2.2602	. 91449	1.0935	2.4715	8
53.3	. 40488	. 44279	2.2584	. 91437	1.0936	2.4699	7
54	. 40514	. 44314	2.2566	. 91425	1.0938	2.4683	6
55	. 40541	. 44349	2.2549	. 91414	1.0939	2.4667	
56	. 40567	. 44384	2.2531	. 91402	1.0941	2.4650	4
57	. 40594	. 44418	2.2513	. 91390	1.0942	2.4634	3
58	. 40621	. 44453	2.2496	. 91378	1.0944	2.4618	2
59	. 40647	. 44488	2.2478	. 91366	1.0945	2.4602	,
60	. 40674	. 44523	2.2460	. 91355	1.0946	2.4580	0
,	Cos	Cot	Tan	Sin	Cso	Sec	,
113°	93 ${ }^{\circ}$					$(94$	66

Note the degrees listed on the top and bottom

The Pythagorean Theorem gives us the third side
$\sqrt{10^{2}-4^{2}}=\sqrt{84} \approx 9.16$

The last angle can be found easily since it is a complementary angle
$90^{\circ}-66.42182^{\circ} \approx 23.57818^{\circ}$

What's a complimentary angle?

Complementary Angles

Note that:

$$
\begin{array}{cc}
\sin (\theta)=\frac{A}{C} & \cos (\theta)=\frac{B}{C} \\
\cos \left(90^{\circ}-\theta\right)=\frac{A}{C} & \sin \left(90^{\circ}-\theta\right)=\frac{B}{C}
\end{array}
$$

So we have the following Identities

$$
\begin{aligned}
& \sin (90-\theta)=\cos (\theta) \\
& \cos (90-\theta)=\sin (\theta)
\end{aligned}
$$

So we really only need to know the sines and cosines of the angles between 0° and 45°.

HW: 6.2 3,4,9, 11a, 11b, 15, 16, 21, 31, 39, 47

