## The Unit Circle

## Unit Circle View of Trig functions

Here we redefine the sin and cosine functions as coordinates on the unit circle.


Take a look at this animation and notice that the sine and cosine function are doing the same thing, only out of sync by $90^{\circ}$
http://schoenbrun.com/foothill/math48c-2/gsps/CircularMotion.gsp

Note that $\theta$ can have any real number as its value.


In the 2 nd quadrant the sine is still positive but the cosine is negative.

In the third quadrant both are negative



And in the 4th quadrant only the sine is negative.


Here we have a map of showing what sign's of the two functions in each quadrant.


Hint: It is a good idea to become familiar with these values.

There are the sine and cosine value of some important angles:

$$
\begin{aligned}
& \sin \left(0^{\circ}\right)=0 \\
& \cos \left(0^{\circ}\right)=1 \\
& \sin \left(90^{\circ}\right)=1 \\
& \cos \left(90^{\circ}\right)=0 \\
& \sin \left(180^{\circ}\right)=0 \\
& \cos \left(180^{\circ}\right)=-1 \\
& \sin \left(270^{\circ}\right)=-1 \\
& \cos \left(270^{\circ}\right)=0
\end{aligned}
$$

## Reference Angles

A Reference angle is an angle in the first quadrant.
Every angle will have a corresponding References Angle.
The trigonometric functions of an angle will have the same value as for the corresponding reference angle or its negative.

First we look at angles $0^{\circ} \leq \theta \leq 360^{\circ}$
Note, that the reference angle for any angle in the first quadrant is itself.

For an angle in the 2nd quadrant, draw a line parallel to the X -axis through the point where the angle intersects the unit circle and then find where this line intersects the unit circle in the first quadrant.


Note that for the 2nd quadrant $\theta_{R}=180^{\circ}-\theta$
Also note that
$\sin \left(\theta_{R}\right)=\sin (\theta)$
but

$$
\cos \left(\theta_{R}\right)=-\cos (\theta)
$$

For an angle in the 3rd quadrant, extend the terminal ray in the opposite direction and find where it intersects the unit circle.


Note that for the 3rd quadrant $\theta_{R}=\theta-180^{\circ}$
Also note that
$\sin \left(\theta_{R}\right)=-\sin (\theta)$
and
$\cos \left(\theta_{R}\right)=-\cos (\theta)$

Finally for an angle in the 4th quadrant draw a line parallel to the $y$ axis from where the angle intersects the unit circle.


Note that for the 4th quadrant $\theta_{R}=360^{\circ}-\theta$
Also note that
$\sin \left(\theta_{R}\right)=-\sin (\theta)$
but

$$
\cos \left(\theta_{R}\right)=\cos (\theta)
$$

For any angle $\theta<0^{\circ}$ or $\theta>360^{\circ}$
There is some angle $\theta_{u}, u$ as in unit-circle for which
$\theta=\theta_{u}+n 360^{\circ}$
where $n$ is an integer such that $0^{\circ} \leq \theta_{u} \leq 360^{\circ}$
With $\sin \left(\theta_{u}\right)=\sin (\theta)$
and
$\cos \left(\theta_{u}\right)=\cos (\theta)$

Recall that:
$\sin (90-\theta)=\cos (\theta)$
$\cos (90-\theta)=\sin (\theta)$
For one of these functions where $45^{\circ}<\theta \leq 90^{\circ}$, you can find the value using the complementary function.

So for calculation purposes, we only need to know the values of the sine and cosine between $0^{\circ}$ and $45^{\circ}$.

The exact values of the sine and cosine can be determined exactly for angles that multiples of $30^{\circ}$ and $45^{\circ}$.

Functions: We can find an exact expression for any multiple of $30^{\circ}$ or $45^{\circ}$

| Angle | Sine | Cos | Angle | Sine | Cos | Angle | Sine | Cosine | Angle | Sine | Cos |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0^{\circ}$ |  |  | $90^{\circ}$ |  |  | $180^{\circ}$ |  |  | $360^{\circ}$ |  |  |
| $30^{\circ}$ |  |  | $120^{\circ}$ |  |  | $210^{\circ}$ |  |  | $300^{\circ}$ |  |  |
| $45^{\circ}$ |  |  | $135^{\circ}$ |  |  | $225^{\circ}$ |  |  | $315^{\circ}$ |  |  |
| $60^{\circ}$ |  |  | $150^{\circ}$ |  |  | $240^{\circ}$ |  |  | $330^{\circ}$ |  |  |

## Solutions

| Angle | (cos,sin) | Angle | (cos,sin) | Angle | $(\cos , \sin )$ | Angle | (cos,sin) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0^{\circ}$ | $(+1,0)$ | $90^{\circ}$ | $(0,+1)$ | $180^{\circ}$ | $(-1,0)$ | $360^{\circ}$ | $(0,-1)$ |
| $30^{\circ}$ | $\left(+\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$ | $120^{\circ}$ | $\left(-\frac{1}{2},+\frac{\sqrt{3}}{2}\right)$ | $210^{\circ}$ | $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ | $300^{\circ}$ | $\left(+\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ |
| $45^{\circ}$ | $\left(+\frac{1}{\sqrt{2}},+\frac{1}{\sqrt{2}}\right)$ | $135^{\circ}$ | $\left(-\frac{1}{\sqrt{2}},+\frac{1}{\sqrt{2}}\right)$ | $225^{\circ}$ | $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ | $315^{\circ}$ | $\left(+\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ |
| $60^{\circ}$ | $\left(+\frac{1}{2},+\frac{\sqrt{3}}{2}\right)$ | $150^{\circ}$ | $\left(-\frac{\sqrt{3}}{2},+\frac{1}{2}\right)$ | $240^{\circ}$ | $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ | $330^{\circ}$ | $\left(+\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$ |

HW: 5.2: 5-10, 13-15, 23-26

