Graphs of Sine and Cosine

Take a look at this animation.
http://schoenbrun.com/foothill/math48c-2/gsps/rCircularMotion2.gsp
Demonstrate how to graph a function on the calculator
We want to write a very general form of these functions and understand it.

$$
\begin{aligned}
& f(\theta)=A \sin (B(\theta-C))+D \\
& f(\theta)=A \cos (B(\theta-C))+D
\end{aligned}
$$

$$
f(\theta)=A \sin (B(\theta-C))+D
$$

Start with a simple sine function $A=1, B=1, C=0, D=0$!

$$
f(\theta)=\sin (\theta)+D
$$

What does having $D \neq 0$ do?

This is of course just a vertical shift transformation you would expect from any function.

$$
f(\theta)=A \sin (\theta)
$$

What does changing A do?

This of course is just a dilation in the Y direction
Notice that $A=2$ is the Amplitude of the function.

$$
f(\theta)=A \sin (\theta)
$$

What if A is negative?

This is just a reflection across the x axis.

$$
f(\theta)=\sin (B \theta)
$$

What does changing B do?

Note that as B gets larger, the period gets smaller.
This is just a dilation in the

$f(\theta)=\sin (B \theta)$

What happens when B gets smaller?

When B gets smaller, the period gets larger.
So B changes the PERIOD or the FREQUENCY! Note the inverse relationship to Period.
$B=1$ Period $=2 \pi$
$B=2$ Period $=\pi$
$B=1 / 2$ Period $=4 \pi$
So the Period of a Sine or Cosine function is $2 \pi / B$.

What is the Frequency? Its reciprocal $=B / 2 \pi$

$$
f(\theta)=\sin (\theta-C)
$$

Finally what does C do?

Notice the starting point $(0,0)$ has now moved to the right $(\pi / 4,0)$. This is a horizontal translation. It is also known as a horizontal shift. For a sine or cosine function we call this a PHASE SHIFT!

Definition: A phase shift is the portion of one period shifted horizontally. Note that a Phase shift of $\frac{3 \pi}{2}$ of a sine function gives you a cosine function

Application: Power in an AC circuit.
US Current is AC 60 hz 120 Volts:
Amplitude is 120 Volts, so Voltage varies from +120 V to -120 V .
The period is $1 / 60$ second and the frequency is 60 hz or 60 times per second
AC uses two wires, with the Voltage between the wires changing over time:

With and without ground wire.

European and some US homes also have 220 Volt 60 hz AC

Some Canadians have 50 hz circuits.

For Industrial Applications, a 4 wire 3 Phase 120 Volt system is used to provide more and smoother power. One ground wire and three hot wires each carry 120 V 60 hz , but at a phase shift of $1 / 3$ and $2 / 3$, or 120° and 240°.

HW: 5.3: 9, 16, 21, 31, 34, 48, 83

